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Results of an attempt to generate a homogeneous 
turbulent shear flow 

By W. G. ROSE? 
Department of Mechanics, The Johns Hopkins University 

(Received 20 August 1965) 

An approximately homogeneous turbulent shear flow is generated in an open- 
return wind tunnel test-section by a plane parallel-rod grid of uniform rod dia- 
meter and non-uniform rod spacing. The grid design is based upon an analysis 
by Owen & Zienkiewicz (1957). Hot-wire measurements taken in this flow include 
mean velocities, component turbulence intensities, shear and two-point space 
correlations, and energy spectra. In  addition, microscales, obtained both 
from instantaneous time derivatives of the hot-wire signal and from two-point 
space correlations, and integral scales, calculated both from correlations and 
energy spectra, are reported. 

Based upon these results, it  is concluded that, far enough away from the grid 
and the test-section wall boundary layers : 
(1) The turbulence intensities are maintained at uniform values by the nearly 
constant mean shear. 
(2) The turbulent shear stress approaches an asymptotic value. 
(3) Measured two-point space correlation coefficients and one-dimensional 
energy spectra attain self-preserving forms. 
(4) When distance downstream of the grid is measured in terms of the number 
of ‘local’ grid rod spacings, (see discussion of microscales obtained from time deri- 
vatives), the Taylor microscale defined by the correlation coefficient Ruu(r,, 0,O) 
grows linearly with this ‘effective’ distance over most of the region measured. 
(5) The limited number of integral scale determinations and experimental 
uncertainty allow only the statements that the magnitude of the longitudinal 
scale is roughly one-eighth the lateral dimension of the square test-section and 
tends to increase slightly with ‘effective ’ distance from the grid. 
(6) The lateral integral scales are approximately one-half the longitudinal 
scales and also increases with distance from the grid. 
(7 )  The integral scale which characterizes the size of the eddy primarilyresponsible 
for momentum transfer is roughly one-tenth the test-section lateral dimension 
(measured at  one point only). 

1. Introduction 
An important and recognized consequence of a statistical description of 

turbulent shear flow is the appearance of the Reynolds stresses in the equations 
of mean motion. This fact results in an indeterminate system of governing equa- 
tions. In  effect, resolution of the indeterminacy requires additional information 

t Now at  the Department of Aerospace Engineering, University of Virginia. 
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concerning the relationship between the mean and fluctuating velocity fields. 
Townsend (1956) points out that all theories of shear flow ‘...differ from one 
another in making more or less plausible assumptions about the relation of the 
mean flow to the turbulence’. 

The most commonly exploited theories are those resulting from the concept 
of exchange coefficient, or ‘eddy’ viscosity, introduced by Boussinesq (1877), 
and those based upon mixing-length theory developed by Taylor (1915) and 
independently by Prandtl( 1925). Hinze (1 959) discusses the distinguishing details 
of these theories. Townsend (1956) and Corrsin (1957) examine their limitations 
in the light of current understanding of shear flow. Briefly summarized, they 
conclude that neither mixing-length nor exchange-coefficient concepts are 
correct in principle; however, in the case of ‘free shear flows ’, they do give fairly 
reliable predictions for the mean flow. 

The need for a deeper understanding of turbulent shear flow, which is beyond 
the scope of mixing length or exchange coefficient theories, leads naturally to 
a search for ‘simple’ shear flows. Ordinary shear flows (channel, boundary layer, 
wake, and jet) are complicated by the proximity of boundaries (Corrsin 1957). 
In  effect, their presence is communicated to each point of an ordinary flow by 
the big eddies which are predominantly responsible for momentum transport 
and interact directly with the mean motion. As this interaction of fluctuating 
and mean motions is the essence of the turbulent shear flow problem, boundary 
proximity complicates the problem in ordinary flows. 

The desire to eliminate, or at least suppress, the effects of boundary proximity 
motivates, to some extent, consideration of the simplest conceivable turbulent 
shear flow, viz. a homogeneous turbulence sustained by a uniform mean shear. 
Ideally, homogeneity requires an infinite space. In  practice, it  may be realized, 
approximately, in a turbulent field, provided the scale of the big eddies is small 
compared with the distance between boundaries confining the flow. 

Since its introduction by von Khrmhn (1937), the concept of homogeneous 
turbulence in a shear flow has been the subject of numerous analyses. Reis 
(1952), Burgers & Mitchner (1953), and Craya (1958) have examined its conse- 
quences to deduce equations for the correlations and energy spectra. Townsend 
(1956) applies it extensively in his study of turbulent shear flow. He points out 
the similarity between the mean velocity field in the neighbourhood of a point in 
ordinary shear flows with that in a uniform shear flow. This local motion may 
be decomposed into a rotation and a plane strain. In  the case of the ordinary 
flows, it is an approximate representation. 

Experiments by Townsend (1954) and Traugott (1958) investigate the turbu- 
lence associated with mean motions that, in a sense, bracket that of ordinary 
and uniform shear flows. Townsend’s distorting duct flow is ‘...almost irro- 
tational and the local motion is a pure strain.’ Traugott’s is one with ‘. . .uniform 
mean vorticity (rotational) but with no mean rate of strain ’. 

More recently Deissler (1961) calculated the turbulence spectra for a non- 
stationary homogeneous shear flow assuming low turbulence Reynolds numbers. 
Fox (1964) complements Deissler’s results by calculating components of the 
velocity correlation not included in Deissler’s work. 
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Corrsin (1963) considers the problem of actually generating a homogeneous 
shear flow. In  reference to a grid generator, he points out: ‘Although this ques- 
tion has yet to be explored, it appears that we have sufficient parameters avail- 
able to recommend an attempt.. . . The flow-grid system parameters at  our dis- 
posal are the following distributions: (a) upstream velocity, (b)  grid rod diameter, 
(c) grid rod spacing and (d) local slope of the grid.’ In  addition, he cautions: 
‘ It must be noted that such a homogeneous turbulent shear flow, even if generated 
in the laboratory, might not remain in equilibrium. There is considerable em- 
pirical evidence that the momentum carrying eddies in fully developed shear 
flows are not small relative to gross shear zone width (Corrsin 1957). Hence, 
a grid-generated homogeneous shear flow might simply develop corresponding 
large eddies.’ 

It should be mentioned that Reis (1952) extended Batchelor’s (1949) theorem 
on the permanence of big eddies to include non-stationary homogeneous shear 
flow. Batchelor & Proudman (1956) have since shown that the required ana- 
lyticity at  zero wave-number does not hold for constant density flows. Although 
this invalidates the exact constancy of the biggest eddies, simple dimensional 
arguments show that they change relatively slow1y;t Batchelor & Stewart (1950) 
demonstrated this in turbulence generated by a uniform grid. 

In  the usual grid-generated homogeneous wind tunnel turbulence, the big 
eddies are roughly comparable in size to grid mesh. Consequently, it  is expected 
that the size of the big eddies in a wind tunnel shear flow will be comparable, 
initially, to the scale characterizing the geometry of the generating device. Hope- 
fully, by design, it will be possible to keep this scale uniform and small compared 
with the test-section dimensions. Reis’sresults indicate that during the developing 
stage the small eddies decay, while the large ones persist. If, and this is the crux 
of the matter, a stationary state is reached, the scale of the big eddies will be that 
introduced by the generating device. 

This paper presents the results of an attempt to generate an approximation 
to a homogeneous turbulent shear flow. Although the flow is conceptually simple, 
it  retains sufficient complexity that the results of this initial exploratory investi- 
gation do not adequately answer all relevant questions. 

2. Apparatus Grid design 

The essential characteristic of the grid used in this attempt is its solidity dis- 
tribution (figure l) ,  which is determined by two considerations; viz. it  must 
generate as uniform a mean-shear and turbulent field as is possible. 

A uniform mean-shear is obtained by a grid design based upon the results 
of an analysis by Owen & Zienkiewicz (195a.f Non-uniformity of the grid- 

? See, for example, Comte-Bellot & Corrsin (1965). 
$ This analysis is based upon results obtained by Taylor & Batchelor (1949) for the 

refraction of mean velocity incident at some angle to a fine mesh wire screen. A more 
recent analysis by McCarthy (1964) extends that of Owen & Zienkiewicz by solving the 
equations of motion ‘without placing restrictions on the magnitude of variation of re- 
sistance across the grid’. This ignores grid-flow instability and consequent turbulence 
inhomogeneities referred t>o in the above discussion. 

7-3 
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generated turbulent field is minimized by limiting the maximum solidity to 
0.40. This avoids instabilities and resulting non-uniformities associated with 
larger values of solidity (figure 3) ,  also Corrsin (1963). It should be noted that 
this restriction on maximum solidity limits the attainable maximum mean- 
shear and, consequently, the usefulness of a grid-produced flow as a tool for 
further investigation of more intensely sheared turbulent flow. 

0 0.1 0.2 0 3  0.4 0.5 0.6 0-7 0.8 0.9 1.0 
Ylh 

a 2hh 1 Y 1  

FIGURE 1. Grid solidity distribution, based on the analysis of Owen & Zienkiewicz (1957). 

( 1 - a ) Z  = IG [1-- (-h-2)], 

where a = d/S, d is the rod diameter = + in., S is the centre-line spacing, 

ri, = ( P ~ - P , ) / + ~ U ; ,  a = i . i / , / ( i+~~) ,  A = au/ay. 
Design values: C T , , ~ ~  = 0.400; hh/Uo = 0.400; KO = 0,585. 

Test facility 

An open-return wind tunnel (figure 3) of nine-to-one contraction ratio and free- 
stream turbulence intensity less than 0.05 yo was used for the experiments. 
The test-section was 1 ft. on a side and extended 12ft. downstream of the grid, 
which was located 2f t .  downstream of the end of the contraction. A slight 
divergence of the test-section walls compensated for boundary-layer growth 
and gave, effectively, a zero pressure gradient. The test-section discharged 
directly into the room, so the mean static pressure equalled the ambient level. 



Results of an attempt to generate a homogeneous turbulent shear $ow 101 

Instrumentation 

A linearized two-channel, constant-temperature hot-wire system (Hubbard 
1957) was used in these tests. The modified frequency response characteristics 
of the R.M.S. Analyser, and differentiating circuit of this system are shown in 
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FIGURE 2. Dependence of turbulence intensity on solidity of a uniform parallel round- 

filter 
Contraction ratio 9:l 

' 1 ft. x 1 ft. x 12 ft. 

FIGURE 3. Schematic of wind-tunnel facility. Open-return wind tunnel. 
1 ft. x 1 ft. x 12 ft. test section, 0.05 yo free-stream turbulence level. 

figures 4 and 5. The sensing elements were fabricated from 1.5 x 10-4in. tungsten 
wire approximately 0.75mm long and operated at an overheat ratio of 0.8. 
Drift of wire calibrations was virtually eliminated by passing the air supply 
through filters composed of fibres with diameters of the order of a micron 
(Collis 1952; Pasceri & Priedlander 1960) and maintaining the room where the 
tunnel was located at  a constant temperature to within a fraction of a degree. 



102 W .  G .  Rose 

1 .o 10 102 103 104 
f (cycles/sec) 

FIGURE 4. Modified frequency response of R.M.S. Analyser. 
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FIGURE 5. Modified frequency response of differentiating circuit. 
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Equipment used in the measurement of energy spectra is described by Gibson 
(1963). All time averaging of the signals was done by analogue integration (Rose 
1962). 

3. Results Close to the grid 

It is expected that the flow just downstream of the grid (figure 6 )  will reflect 
its non-uniform origin, and it is of interest to note exactly the evidence for this 
non-uniformity . Lateral distributions of mean velocity U/U,, intensities ~ ' / a #  
and d l ~ , ,  and shear correlationUv1V: taken along the direction of the mean- 
velocity gradient at  a distance X / h  downstream of the grid plane equal to 1.33 
are shown in figure 7. 

_ -  

non-uniform grid 

FIGURE 6. Reference axes arid nomenclature. 

R.M.S. value 
fluctuating 

Mean component component 
Co-ordinate velocity velocity 

x 0 = 0 ( Y )  UI 

I' F = O  u' 
z V = O  W I  

The mean-velocity profile is compared with a solid straight line which repre- 
sents the faired slope of the profile measured farther downstream at X / h  equal 
to 7-89. This average slope corresponds to a value of non-dimensionalized 
mean shear h/U,,aUlaY equal to 0.27. Scatter of the measured points about this 
average slope, over the range 0.1 < Y / h  < 0-9, is less than & 2.0 yo. Conse- 
quently, the grid generates a nearly uniform mean shear within one-and-one- 
third grid spans downstream of its location. 

Uniformity of the turbulent field is less well established at this downstream 
location. This is indicated by the straight lines connecting points of the shear 
correlation, UVlu:.  Although the intensity distributions, u ' lq  and v ' l q ,  are 
quite uniform, uniformity of the shear correlation appears to be a more difficult 

- -  
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criterion to satisfy. This quantity too must be constant for a homogeneous turbu- 
lence to exist. The fact that the turbulence production is proportional to the pro- 
duct of the shear correlation and mean strain rate could lead to growth of the 
non-uniformity. Downstream data indicate that this is not the case. 

It should be remarked that the increase in the u-intensity in the region Y / h  
approaching unity is consistent with the fact that fluid in this region has travelled 
a fewer number of ‘local’ grid rod-spacings. 
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FIGURE 7. Lateral distributions: S / h  = 1-33, Z/h = 0. 
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Farther downstreunz from the grid 

Evolution of the motion as the fluid moves away from the grid is shown par- 
tially by figures 8-13. Test-section centre-line distributions (figure 8) show 
the decay of the turbulent intensities from their levels close to the grid to uniform 
values which are, presumably, characteristic of the uniform mean-shear magni- 
tude sustaining the turbulence. It is not surprising that the u-component 
intensity attains its asymptotic value upstream of the location where the V- 

and w-components attain their asymptotic values. In  rectilinear and nearly 
rectilinear flow, conversion of mean-flow kinetic energy to turbulent kinetic 
energy occurs directly through the u-component (Corrsin 1957). However, it  is 
no$ obvious just how this turbulent energy is to be partitioned among the three 
fluctuating components. From the present results, it is calculated that roughly 
one-half the total kinetic energy of the fluctuations is divided equally between 
the v- and w-components. This ignores the slight difference between the final 
levels of these two components which is shown in figure 8. 

Of the remaining three distributions included in figure 8, the shear correlation 
and correlation coefficient are the most interesting. The nearly constant value 
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of centre-line mean velocity provides a check on the wall adjustment compen- 
sating for boundary-layer growth. The shear correlation increases monotonically 
to what appears to be an asymptotic value. Approximately 25 % of this increase 
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Additional evidence, as to the manner in which the motion evolves, is presented 
in figures 9-13. Briefly, these results establish the following facts, excluding 
the region of the developing wall boundary layers, the mean-shear and the 
turbulence intensity components are very nearly constant throughout the field. 
The initial wild variation of the shear correlation is reduced considerably. I ts  
measured value at X l h  = 9.76 decreases in magnitude from roughly - 5 x to 
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FIGURE 10. Lateral distributions: S / h  = 4-28, Z / h  = 0. 
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- 3 x 10-5 over the region 0.4 < Y / h  < 0.8. Twoshear-correlation scales are used 
in these figures to give some indication as to the relative magnitude of the 
correlation in the region of uniform mean-shear compared with its value in the 
wall boundary layer. It changes by several orders-of-magnitude (figure 13). An 
unexplained point of interest is the development of minima in the intensity 
distributions along with overshoots in the mean-velocity profile. These occur close 
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FIGURE 12. Lateral distributions: X / h  = 7.89, Z/h = 0. 
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FIGURE 13. Lateral distributions: S / h  = 9.76, Z/h = 0. 
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to the outer ' edge' of the boundary layers (figures 11-13). Figure 14 is a com- 
posite plot of the lateral distributions of the shear-correlation coefficient. Its 
value is seen to develop from something on the order of - 0.05 close to the grid to 
roughly - 0.45 at the most downstream position. 

Two-point space correlations 

The central role played by velocity correlations and energy spectra in attempts 
at understanding the dynamics of turbulent flow motivates their measurement. 
Most important for present purposes are the turbulence scales which are defined 
in terms of the correlation and spectrum functions. Ideally, if the turbulence is to 
be homogeneous these scales must have uniform values throughout the flow, 
after it reaches an asymptotic state. 

The two-point correlation coefficient of the fluctuating velocity components 
in the mean-flow direction, at a point specified by the position vector X with 
components X ,  Y ,  2, and point separation given by the vector r with components 
rx, rr ,  r,, is by definition 

R,,(X, r) = u(X) u(X + r)/d2, 

where the overbar designates a time average value. The longitudinal Taylor 
microscale A,, is defined for convenience by the relation 

______ 

____ 
AS = 2 U y a U i a x ) 2 .  

Lateral microscales A, and A, are given by derivatives with respect to Y and 
2 respectively. The longitudinal integral scale L, is defined by 

Lateral integral scales L, and L, are given by integrations, with respect to 
r p  and rz respectively, of R,,(O, r,, 0 )  and R,,(O, 0, rz). 

In  order that the turbulence be homogeneous, the correlation coefficients must 
be even functions of the point separation. As a consequence, these coefficients 
are given approximately for sufficiently small separations by the first two terms 
of a Taylor series, for example, the coefficient 

This functional form for the correlation coefficient suggests a convenient way 
of displaying the experimental results, viz. a log-log plot. Figures 15 (a) ,  16 (a ) ,  
17 (a )  and 18 (a )  have been constructed with this in mind. The straight solid line 
included on these plots has a slope of 2 .  It represents the required functional 
form for the correlation coefficients in the limit of small separations. The results 
indicate that this necessary condition for a homogeneous turbulence is satisfied 
by the present flow. 

It should be remarked that the correlations were generated by using a sum and 
difference (' quarter square') technique. Consequently, the accuracy of the results 
when the value of the coefficient is close to unity is very poor. However, for 
values of 1 - R,, close to 10-1 the experimental scatter is sufficiently small that 
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FIGURE 14. Evolution of shear correlation coefficient lateral distributions. Values 
of X / h :  0, - , 1.33; 0, ---, 2.97; 
+, ----, 7.89; 8, ----, 9.76. 
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FIGURE 15. Two-point velocity correlation coefficient: X l h  = 7.5, Y / h  = 0.5, Z / h  = 0. 
(a)  Small point separations: 0, 1 - l & , ( r ~ ,  0, 0), A x  = 0.48 in.; 0,  1 -R,,(O, r y ,  0) ,  
h y  = 0.29 in. @)Largepoint separations: 0, Ruu(rX, 0, 0),  LX = 1.46 in.; 0, R,,(O, r y ,  Oj, 
L y  = 0.62 in. 
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FIGURE 16. Two-point velocity correlation coefficient : (a) small point 
separations; (b)  large point separations. 
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FIGURE 17. Two-point velocity correlation coefficient: X / h  = 9.0, Ylh  = 0.5, Zlh  = 0. 
(a) Small point separations; ( b )  large point separations. 
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the number of points measured in this region determine the functional form of the 
distribution a t  small separations, and consequently fix the values of the micro- 
scales to within an estimated & 5 %. 

In  all the correlation measurements to be reported, except R,,(O, 0, rz )  and 
R,,(O, rp, 0) ,  the axes of the wire-sensing elements were oriented parallel to the 
Z-axis, i.e. normal to both the direction of the mean flow and that of the mean- 
velocity gradient. The length of wire-sensing element I;, used, relative to the 
Taylor microscale, is indicated in figure 18 (a). 

X/h  YIh ZIh AI.  
9 025 o 034jn 

~ 9 0375 0 0 3 7 p  
9 0.50 0 0.33111 

o 9 0625 0 030in f 
7 a, 9 075 0 0.28 in 
n 

X/k Ylh Z/h L,: 
9 0.25 0 071 in. 
9 0375 0 073in. 
9 0.50 0 070in. 

0 9 0625 0 064in. 
A 9 075 0 0.60in. 

._ 

0 1.0 2.0 30 40 5.0 60 7 0  
T Y l L Y  

( b )  

FIGURE 18. Two-point velocity correlation coefficient: (a )  small point 
separations; ( 6 )  large point separations. 

Results of measurements at  large point separations (figures 15 (b), 16 (b), 
17 (b), 18 (b)), are displayed best by semi-log plots. These exhibit what appears to 
be a characteristic feature of shear flow, viz. correlation coefficients of component 
fluctuations in the mean-flow direction, when the point separation is in a direction 
normal to that of the mean flow and along that of the mean-velocity gradient, 
are monotonically decreasing functions of the separation distance, as long as the 
two points are in a region of monotonic mean-velocity variation.? This is not 
true of the other lateral correlation, R,,(O, 0, rz) ,  which takes negative values 
at  large separations (figure 19). 

Within the accuracy of the sum and difference technique used to measure the 
correlations, at  large point separations the coefficients approach zero exponen- 

t This is found to hold in channel flow (Laufer 1951; Comte-Bellot 1965), wakes and 
boundary layers (Grant 1958), and jets (Kolpin 1964). 
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tially with increasing separation. The solid straight line of figures 16(b), 17 (b)  
and 18 ( b )  is the same on all three plots for convenience in making a comparison 
of these results. Such a comparison indicates that the distributions are very 
nearly similar. 
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FIGURE 19. Two-point velocity correlation coefficient : point separations along direction 
normal to mean flow and velocity gradient. S l h  = 9.0, Yjh = 0.5,Zlh = 0 ;  hz = 0.33 in., 
Lz = 0.36in. 

Considerable effort was required for measuring Ruu(rx, 0,O) (figures 15 (a), 
15(b)). Each point was obtained from a lateral traverse of the downstream 
wire along a constant rx line, and extrapolation of the resulting profiles of 
Ruu(r,, r y ,  0 )  to obtain a value for Ruu(rx, 0,O).  Only one longitudinal distribution 
of Buu(r,, 0,O) was attempted. It was found that an appreciable systematic error 
in the magnitude of R,,(r,, 0 , O )  results when its va.lue is approximated by 
placing the wire just ‘outside’ the wake of the upstream wire. This is especially 
true for small separations in the streamwise direction where errors on the order 
of - 5 yo would result. 

A comparison of the longitudinal and lateral correlation coefficients Ru,(rx, 0 , O )  
and R,,(O, r y ,  0 ) ,  together with the values of their associated microscales and 
integral scales, is given in figures 15 (a)  and 15 (b) .  

Figures 16 (a )  and 16 (b)  show the lateral correlation coefficient distributions 
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R,,(O, r p ,  0 )  a t  two locations downstream of the grid corresponding to values of 
X l h  = 7-5 and 9.0. Although these distributions are similar, with no discernible 
systematic variations, the scales increase with distance from the grid. The 
microscale increases by 14 yo and the integral scale by 13 yo. It is estimated 
that the accuracy of the scale values determined from the lateral correlations is 

Figures 17(a)  and 17(b) provide a check on homogeneity of the turbulence 
in the centre of the test-section. These plots of the lateral distribution of 
R,(O, r p ,  0 )  represent results obtained for point separations along the direction 
of increasing and decreasing mean velocity, r p  > 0 and r p  < 0 respectively. 
The two distributions are similar. The 6 %  difference in the values of their 
microscales and the 1.4 yo difference in the integral scales are not significant, 
in view of the accuracy of the scale values. 

Figures l S ( a )  and 18(b) are composite plots of the coefficient distributions 
obtained a t  five locations along the mean-velocity gradient, all taken at  the 
same distance from the grid, X / h  = 9.0. Excluding the results for Y/h  = 0.75, 
the distributions are similar. The distribution for Ylh = 0.75 is excluded on 
the basis that this location is influenced by the wall boundary layer (figures 13, 
14) and is effectively too close to the grid (figure 24). 

Figure 19 is a rectilinear plot of the lateral correlation coefficient, R,,(O, 0,  rz ) ,  
obtained for point separations along a direction normal to both that of the mean 
flow and that of the mean-velocity gradient. Contrasted with lateral distributions 
along the gradient, this distribution takes on negative values at  large point 
separations. Although the microscale values obtained for the two lateral direc- 
tions are the same, the integral scale along the gradient is almost twice that 
normal to  the gradient. This lateral distribution, R,,(O, 0,  rz ) ,  was obtained 
with the wire axes oriented parallel to the direction of the mean-velocity 
gradient. 

Figure 20 is a semi-log plot of the cross-correlation coefficient R,,(O, rY ,  0 )  
which is obtained from measurements at  X / h  = 9.0. From this distribution, 
it is possible to define a scale which characterizes the size of eddy predominately 
responsible for momentum transfer and, consequently, the turbulent shear stress. 
Its definition is 

+ 5 % .  

L = Jrn ~ u t , ( o , Y y , o ) d ~ p .  
0 

The value of L determined from the measurements is roughly one-tenth the 
test-section lateral dimension. 

One-dimensional energy spectra 

Results obtained from measurements of the one-dimensional energy spectra 
are given in figures 21 and 22. The measured frequencies have been converted 
to wave-numbers by the relationship K ,  = 2n-f/o, where f is the frequency, 
the local mean velocity, and K ,  the wave-number in the mean-flow direction. 
The independent variable is the non-dimensional product of wave-number 
K ,  and Kolmogoroff microscale 7 = (v3/e) i ,  where v is the kinematic viscosity, 
and E the dissipation rate. The value of B is obtained by equating it to the 

8 Fluid Mech. 25 
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production rate since the lateral transport terms are negligible. The production 
rate - .uV ao/aY is calculated in turn from the results of measurements taken 
far from the grid. Equating the production to the dissipation is justified by the 
measured uniformity of the turbulence intensities. 

I I I .  I I I 

0 0.5 1 .o 1 -5 2.0 2.5 3.0 3.5 
r Y I L  

Z/h  = 0, L = 1.1 in. 
FIGURE 20. Two-point cross-correlation coefficient. X/7z = 9.0, Y / h  = 0.5, 

Figure 21 compares spectra obtained at two downstream locations from the 
grid, X / h  = 7-5 and 9.0. They are not similar. There is relatively less energy in 
the higher wave-numbers of the spectrum at X / h  = 9.0. Also, the integral scale 
at this location is 23 % larger than that found at X / h  = 7.5. 

Integral scales are computed from the spectra, by using the relationship 
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1" 

10-4 10-3 10-2 1 .o 
1KX 

FIGURE 21. One-dimensional energy spectra. 

10 

1.0 

10-4 10-3 lo-* 10-1 1 .o 
1;IKX 

FIGURE 22. One-dimensional energy spectra. 
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where f is frequency in cycles per second. Definitions of integral scale in terms 
of correlations and spectra are equivalent, since the correlation is the Fourier 
cosine transform of the one-dimensional energy spectrum. Because of experi- 
mental scatter, extrapolation of the measured spectra to zero frequency, to 
obtain EJ0)  needed in the calculation of integral scales, limits the accuracy 
of the scales to ? 10%. Figure 22 is a composite plot of the spectra corre- 
sponding to the correlations of figures 18(a) and 18(b). As in the case of 
the correlations, the resulting distributions are nearly similar excepting that 
which is influenced by the wall boundary layer Y/h  = 0.75. The length of 
the wire sensing element, I,,, relative to 7, is indicated on both figures 21 
and 22. 

0.30 

0.25 

A; 
A" 

I I I I I 

0 ' 5.0 6 0  7.0 8.0 9.0 10.0 
X / h  
(a)  

0-45 r 

FIGURE 23. Taylor microscalcs: (a)  Centre-line variation: Y / h  = 0.5, Z/h = 0. 0, 
( & / a t ) z ;  0,  Rll(rdy, 0, 0). (6) Lateral variation: X / h  = 9.0, Z / h  = 0. 0, Ax, (au/at)z; 
- 

0 9  Rwu(0, YY, 0). 

Microscales obtained from time derivatives 

Assuming the transformation a/at = ga/aX to be applicable (Lin 1953; Lumley 
1965), values of the microscale Ax have been calculated from time derivatives of 
the hot-wire signal. Figures 23 (a )  and 33 ( 6 )  present A, distributions obtained 
from traverses along the test-section centre-line and transverse to the centre-line 
in the direction of the mean-velocity gradient. These values of A,  are corrected 
for noise, and discussed in the following section. The spatial variation of the 
microscale, which increases with distance from the grid and decreases, for the 
most part, with increasing Y/h, suggests that the turbulence retains some evi- 
dence of its grid-generated origin. 

In  decaying homogeneous turbulence, generated with a square-mesh round- 
rod grid at constant grid Reynolds number, the turbulence properties are func- 
tions of the number of mesh lengths the fluid has moved downstream of the grid. 
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For the non-uniform parallel round-rod grid, used to produce the shear flow, 
rod centre-line spacing is analogous to mesh size and provides an appropriate 
parameter for calculating an ‘effective’ distance from the grid. This has been 
done, in a crude way, by neglecting the boundary-layer displacement thickness 
and using the continuity equation to relate the downstream Y-location of fluid 
to its Y-location at the grid, hence, the ‘local’ grid rod spacing, S. 

025 

0.40 

- 

0.35 

A; 
030 

Figure 24 is the result obtained by replotting the microscale distributions of 
figures 23 (a)  and (23 b)  as functions of effective distance from the grid expressed 
in terms of the number of local rod spacings X / S .  Values of A, measured at the 
greatest effective distances (figure 24) correspond to points at sma.11 Y / h  in 
figure 23 (b).  Owing to experimental scatter, and the fact that the point farthest 
from the grid is also closest to the wall, the possibility of an asymptotic value 
of t’lie microscale remains in question. 

Xummary of turbulence scales 

Figures 23(a), 23(b), 25(a), and 25(b) summarize the results of microscale and 
integral scale values obtained from the correlations, time derivatives and energy 
spectra. Included on figure 23 (a )  is a comparison of the values of the longitudinal 
microscale calculated from the correlation coefficient Ruu(rx, 0, 0), A, = 0-48 in., 
and from the time derivative, A, = 0-32in., both values corresponding to a 
centre-line location a t  X / h  equal to 7.5. Of the two, the first is probably the more 
reliable. It is determined to within an estimated accuracy of 

Sources of systematic error in scale values obtained from time derivatives 
include: finite wire length (Dryden, Schubauer, Mock & Skramstad 1937; 
Uberoi & Kovasznay 1953; Frenkiel 1954) and high-frequency response of both 
the R.M.S. Analyser (figure4), and the differentiating circuit (figure 5). Since the 
flow is nearly homogeneous and the wire lengths roughly constant, corrections 

10 %. 
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would be quite uniform and alter the levels of the correlation coefficient dis- 
tributions but effect little cha,nge in their shape. 

A comparison of the longitudinal and lateral microscale distributions A, 
and A, is given by figure 23 (b).  Both distributions show the same tendency of 
the scale magnitudes to increase with effective distance from the grid, S/S. 
They do not show local isotropy, i.e. A, P J2 A,. 

1.8 r 
T 

o r  ' I I I 1 
0 0-2 0 4  0.6 0 8  1.0 

I 0 

" 
0 0-2 0.3 0.6 0.8 1.0 

Ylh Ylh 

(4 (a) 

FIGURE 25. Lateral variation of integral scales: (a)  longitudinal scale; ( b )  lateral scale. 

S / h  XIh 
(a )  0 9.0 Obtained from Obtained from 

spectra 0 7.5 

R,,(rs, 0, 0) 
A 7.5 Obtained from 

Longitudinal integral scales are shown in figure 25 (a) .  Two independently 
obtained values, from separate spectral measurements at  X / h  = 7.5, give some 
indication of the probable error in the integral scales determined from spectra. 
Another check on these scales is provided by the single value determined from 
the longitudinal correlation coefficient R,,(rx, 0,O).  Because of large scatter 
and the small number of determinations, the only conclusions possible are that 
the scale L, is roughly one-tenth the size of the lateral dimension of the square 
test-section, and its magnitude tends to increase with effective distance from the 
grid. Lateral integral scales calculated from R,,(O, r,, 0) are shownin figure 25 (b) .  
These values also tend to increase with effective distance from the grid. The small 
difference in magnitude between the value of X / h  = 7.5 and X / h  = 9.0 is 
not significant. Comparing figures 25 (a )  and 25 (b) ,  L, is found to be roughly 
twice L,. 
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4. Remarks 
Initially, the present experiments were intended to give a quick look at the 

turbulence associated with a velocity field corresponding to a uniform mean shear. 
Work by other investigators, previously cited, established the possibility of 
generating the mean flow with linear velocity profile and provided an analytical 
background which facilitated design of the generating mechanism. No prior 
clues to the turbulence history were available. The experiments were pursued 
until the results indicated that the realized turbulent field lacked homogeneity 
of the scales and that the true nature of this field was partially obscured by 
extraneous effects. 

Evaluation of the results leads to the conclusions that at  sufficiently large 
distances from the generating grid and wall boundary layers, the turbulence 
intensities are maintained at  uniform values by the constant mean shear, the 
turbulent shear-stress approaches an asymptotic value, the two-point space 
correlation coefficients and one-dimensional energy spectra attain self-preserving 
forms, and the turbulence scales over the limited extent of test-section available 
to measurement, increases with distance from the grid. Also the integral scales 
are roughly one-tenth the lateral dimensions of the square test-section or 
smaller. 

The combined effects of persistence of grid-generated inhomogeneties, in- 
adequate test-section length, wall boundary layer growth, and experimental 
uncertainty frustrate attempts to draw additional conclusions. It is the author’s 
opinion that these effects can be either eliminated or adequately minimized 
and that the present results justify further attempts a t  realizing a homogeneous 
turbulent shear flow. 
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